A Dynamic Ensemble Selection of Deepfake Detectors Specialized for Individual Face Parts
نویسندگان
چکیده
The development of deepfake technology, based on deep learning, has made it easier to create images fake human faces that are indistinguishable from the real thing. Many methods and programs publicly available can be used maliciously, for example, by creating social media accounts with non-existent faces. To prevent misuse such images, several detection have been proposed as a countermeasure proven capable detecting deepfakes high accuracy when target model identified. However, existing approaches not robust partial editing and/or occlusion caused masks, glasses, or manual editing, all which lead an unacceptable drop in accuracy. In this paper, we propose novel approach dynamic configuration ensemble consists detectors. These detectors convolutional neural networks (CNNs) specialized detect focusing individual parts face. We demonstrate selection face selected CNN models is effective at realizing highly accurate even partly edited occluded images.
منابع مشابه
Ensemble of Face/eye Detectors for Accurate Automatic Face Detection
In this work we propose a simple yet effective face detector that combines several face/eye detectors that possess different characteristics. Specifically, we report an extensive study for combining face/eye detectors that results in a final system we call FED that combines three face detectors that extract regions of candidate faces from an image with two approaches for eye detection: the enha...
متن کاملEnsembleHMD: Accurate Hardware Malware Detectors with Specialized Ensemble Classifiers
Hardware-based malware detectors (HMDs) are a promising new approach to defend against malware. HMDs collect low-level architectural features and use them to classify malware from normal programs. With simple hardware support, HMDs can be always on, operating as a first line of defense that prioritizes the application of more expensive and more accurate software-detector. In this paper, our goa...
متن کاملA probabilistic model of classifier competence for dynamic ensemble selection
The concept of a classifier competence is fundamental to multiple classifier systems (MCSs). In this study, a method for calculating the classifier competence is developed using a probabilistic model. In the method, first a randomised reference classifier (RRC) whose class supports are realisations of the random variables with beta probability distributions is constructed. The parameters of the...
متن کاملdiagnostic and developmental potentials of dynamic assessment for writing skill
این پایان نامه بدنبال بررسی کاربرد ارزیابی مستمر در یک محیط یادگیری زبان دوم از طریق طرح چهار سوال تحقیق زیر بود: (1) درک توانایی های فراگیران زمانیکه که از طریق برآورد عملکرد مستقل آنها امکان پذیر نباشد اما در طول جلسات ارزیابی مستمر مشخص شوند; (2) امکان تقویت توانایی های فراگیران از طریق ارزیابی مستمر; (3) سودمندی ارزیابی مستمر در هدایت آموزش فردی به سمتی که به منطقه ی تقریبی رشد افراد حساس ا...
15 صفحه اولFrom dynamic classifier selection to dynamic ensemble selection
In handwritten pattern recognition, the multiple classifier system has been shown to be useful for improving recognition rates. One of the most important tasks in optimizing a multiple classifier system is to select a group of adequate classifiers, known as an Ensemble of Classifiers (EoC), from a pool of classifiers. Static selection schemes select an EoC for all test patterns, and dynamic sel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronics
سال: 2023
ISSN: ['2079-9292']
DOI: https://doi.org/10.3390/electronics12183932